Negative q-Stirling numbers

نویسندگان

  • Yue CAI
  • Margaret A. READDY
چکیده

The notion of the negative q-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring the negative q-binomial, we show the classical q-Stirling numbers of the second kind can be expressed as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1 + q. We extend this enumerative result via a decomposition of the Stirling poset, as well as a homological version of Stembridge’s q = −1 phenomenon. A parallel enumerative, poset theoretic and homological study for the q-Stirling numbers of the first kind is done beginning with de Médicis and Leroux’s rook placement formulation. Letting t = 1+q we give a bijective combinatorial argument à la Viennot showing the (q, t)-Stirling numbers of the first and second kind are orthogonal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Generalized q-Stirling Numbers and Their Interpolation Functions

In this paper, we define the generating functions for the generalized q-Stirling numbers of the second kind. By applying Mellin transform to these functions, we construct interpolation functions of these numbers at negative integers. We also derive some identities and relations related to q-Bernoulli numbers and polynomials and q-Stirling numbers of the second kind.

متن کامل

ON (q; r; w)-STIRLING NUMBERS OF THE SECOND KIND

In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de…ned (q; r; w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q...

متن کامل

q-Analogues of multiparameter non-central Stirling and generalized harmonic numbers

Keywords: Stirling numbers q-Stirling numbers Multiparameter non-central Stirling numbers Comtet numbers q-Analogue Harmonic numbers Generalized q-harmonic numbers a b s t r a c t In this paper we derive q-analogues of the multiparameter non-central Stirling numbers of the first and second kind, introduced by El-Desouky. Moreover, recurrence relations, explicit formulas and a connection between...

متن کامل

q-Stirling numbers: A new view

We show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1+q. We extend this enumerative result via a decomposition of a new poset Π(n, k) which we call the Stirling poset of the second kind. Its rank generating function is the q-Stirling number S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014